ООО "НПО АКВИЛОН"

АНАЛИЗАТОРЫ ВОЛЬТАМПЕРОМЕТРИЧЕСКИЕ АКВ-07 МК РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 4215-001-81696414-2007 РЭ

Содержание

	1.4.2. Устройство анализатора	7
	1.4.2.1 Анализатор состоит из электрохимической ячейки,	
	потенциостата, управляемого микропроцессором, и персональной ЭВМ	
	(puc.4)	7
	2.5.2. Параметры измерений	. 18
	2.5.3 Выполнение измерений	. 19
2	.7 Обслуживание	. 29
2	.7.1 ПОДГОТОВКА К ХРАНЕНИЮ И ТРАНСПОРТИРОВКЕ	. 29
	1. Разборка анализатора	. 29
	2. Упаковка для транспортировки	
	Приложение А (обязательное)	. 30
	А.1Требования к чистоте реактивов.	. 30
	А.2 Требования к чистоте посуды	. 31
4	.3 Возможные неисправности	. 32

Настоящее руководство по эксплуатации предназначено для специалистов испытательных лабораторий при использовании по назначению анализаторов вольтамперометрических АКВ-07 МК (далее — анализаторы), изучения правил эксплуатации, хранения и транспортирования.

Анализаторы предназначены для количественного анализа содержания металлов (Cd, Pb, Zn, Cu, Co, Ni, Tl, Hg, As, Se, Sb, Fe и др.) и ряда других электрохимически активных веществ.

Анализаторы могут быть использованы для оснащения лабораторий, осуществляющих государственный контроль безопасности воды, пищевых продуктов и сырья, фарм— и ветпрепаратов, объектов окружающей среды, а также лабораторий предприятий различных отраслей народного хозяйства.

К работе с анализаторами допускается обслуживающий персонал, имеющий среднее специальное или высшее образование, изучивший техническую документацию, действующие правила работы с химическими реактивами по ГОСТ 12.4.21 и методики выполнения измерений.

Анализаторы вольтамперометрические АКВ-07 МК в документации и при заказе имеют следующее обозначение: "Анализатор вольтамперометрический АКВ-07 МК" по ТУ 4215-001-81696414-2007.

1 ОПИСАНИЕ И РАБОТА

1.1 Назначение прибора

Анализаторы предназначены для количественного анализа содержания металлов (Cd, Pb, Zn, Cu, Co, Ni, Tl, Hg, As, Se, Sb, Fe и др.) и ряда других электрохимически активных веществ в единицах концентрации в режиме инверсионной вольтамперометрии в различных объектах после подготовки проб к измерениям.

1.2 Технические характеристики

№ п/п	Наименование характеристики	Значение	
1.2.1	Диапазон измерений массовой концентрации (Cd ²⁺), мг/дм ³	от 1·10 ⁻⁴ до 1,0	
1.2.2	Предел обнаружения (Cd ²⁺), мг/дм3 (при времени накопления 60 с)	5·10 ⁻⁵	
1.2.3	Относительное значение среднего квадратического отклонения (СКО) случайной составляющей погрешности результатов измерений, %	4	
1.2.4	Относительное значение среднего квадратического отклонения (СКО) случайной составляющей погрешности результатов измерений за 8 часов непрерывной работы, %	5	
1.2.5	Ток потребления, А	не более 0,5	

1.2.6	Диапазон начального поляризующего напряжения, В	0 ÷ ± 2,0	
1.2.7	Диапазон скоростей развертки потенциала, В/с	0 ÷ 0.5	
1.2.8	Диапазон амплитуды переменного прямоугольного напряжения, мВ	0 ÷ 100	
1.2.9	Диапазон времени накопления, с	1 ÷ 9999	
1.2.10	Общая потребляемая мощность, Вт	не более 50	
1.2.11	Электропитание должно осуществляться от однофазной сети переменного тока с частотой (50 \pm 1) Гц и напряжением 220 \pm 22 В.		
1.2.12	2 Контроль метрологических характеристик по п.п.1.2.2—1.2.4 осуществляется в соответствии с инструкцией 4215-001-18294344 "Анализаторы вольтамперометрические АКВ-07 МК. Методика поверки" и применением государственного стандартного образца состава ионов кадмия с аттестованным значением массовой концентрации ионов кадмия 1,0 мг/см ³ и относительной погрешностью аттестованного значения не более 1%		
1.2.13	Анализатор должен сохранять работоспособность при следующих условиях:		
	температура окружающей среды, ℃	от +10 до +35	
	относительная влажность воздуха при 25℃, %	до 80	
	атмосферное давление, кПа	84,0-106,7	
		(630-800 мм рт.ст.)	

1.3 Состав анализатора 1.3.1 В комплект поставки анализаторов вольтамперометрических АКВ-07 МК входят:

Наименование	Кол-во
Анализатор вольтамперометрический АКВ-07 МК	1
Электрод АКУ-1 рабочий (углеситаловый)	1
Электрод АКУ-2 рабочий (золотой)	1
Электрод вспомогательный (стеклоуглеродный тигель)	2
Электрод сравнения хлорсеребряный ЭВЛ-1М4 по ТУ 25-	2
05(1E2840.517)-78	

Наименование	Кол-во
Инструкция «Анализаторы вольтамперометрические АКВ-07	1
МК. Методика поверки»	
Руководство по эксплуатации анализатора	1
вольтамперометрического АКВ-07 МК	
Программный комплекс «Polar». Руководство пользователя	1
Компакт-диск с программным комплексом «Polar»	1
Сетевой шнур	1
Кабель интерфейсный RS232	1
Персональный компьютер*	1
Принтер*	1

*Примечание: Персональный компьютер с портом RS232, приводом для чтения компакт-дисков и установленной операционной системой WindowsXP и принтер поставляются по отдельному заказу.

- 1.4 Устройство и принцип работы анализатора.
- 1.4.1 Принцип работы прибора основан на зависимости величины тока окисления (восстановления) определяемого вещества от его концентрации в пробе.
- 1.4.1.2 Инверсионная вольтамперометрия является аналитическим методом определения содержания электроактивных веществ, присутствующих в растворах в низких концентрациях.
- 1.4.1.3 Инверсионно-вольтамперометрические измерения состоят из двух последовательных стадий (рис.1).

На первой стадии происходит электролитическое накопление (концентрирование) определяемого вещества на поверхности рабочего электрода при постоянном потенциале $E_{\rm H}$ в течение времени $t_{\rm H}$.

Например, при определении массовой концентрации ионов кадмия в растворе, на первой стадии (1) рис.1 происходит превращение: $Cd^{2+} + 2e^{-} \rightarrow Cd^{0}$.

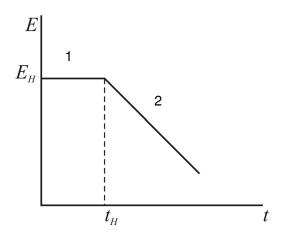


Рис.1. Изменение потенциала рабочего электрода в процессе инверсионновольтамперометрического измерения:

(1)- стадия накопления, (2)- стадия измерения

На второй стадии потенциал рабочего электрода меняется по линейному закону, что приводит к растворению определяемого вещества и переходу его в

раствор. Ток растворения, регистрируемый на второй стадии, зависит от концентрации определяемого вещества в объеме раствора.

Например, при определении массовой концентрации ионов кадмия в растворе, на второй стадии (2) рис.1 происходит превращение: $Cd^0 - 2e^- \rightarrow Cd^{2+}$.

1.4.1.4 Зависимость тока растворения от потенциала рабочего электрода называется вольтамперограммой (рис.2).

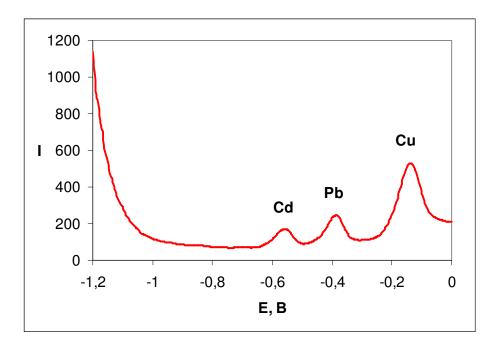


Рис.2. Пример вольтамперограммы раствора, содержащего ионы кадмия, свинца и меди.

1.4.1.5 Идентификация пика элемента (качественный анализ) выполняется по определению значения потенциала пика (E_p) на вольтамперограмме (рис.2 и 3) и его сравнения с табличными значениями

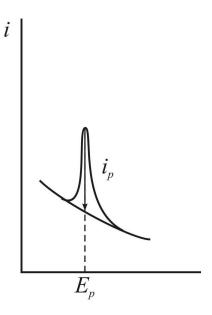


Рис.3. Определение высоты и потенциала пика.

- 1.4.1.6 Расчет массовой концентрации (количественный анализ) проводится на основании измерения высоты пика (i_p) или площади (S_p) (рис.3). Оба эти параметра прямо пропорционально зависят от концентрации определяемого вещества в объеме раствора.
 - 1.4.2. Устройство анализатора.
- 1.4.2.1 Анализатор состоит из электрохимической ячейки, потенциостата, управляемого микропроцессором, и персональной ЭВМ (рис.4).

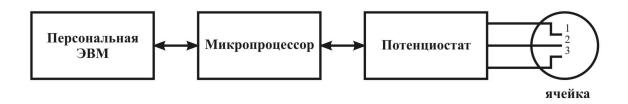


Рис.4. Блок-схема анализатора вольтамперометрического АКВ-07МК.

Ячейка электрохимическая (трехэлектродная) состоит из рабочего электрода, электрода сравнения и вспомогательного электрода.

Рабочий электрод (АКУ-1 или АКУ-2) предназначен для концентрирования определяемого вещества и получения аналитического сигнала.

Электрод сравнения хлорсеребряный ЭВЛ-1М4 предназначен для контроля потенциала рабочего электрода.

Вспомогательный электрод служит для измерения тока, проходящего через рабочий электрод.

Потенциостат предназначен для поддержания потенциала рабочего электрода по программе, задаваемой микропроцессором, измерения тока, протекающего через электрохимическую ячейку, и передачи данных персональной ЭВМ.

Персональная ЭВМ - компьютер с программным комплексом "Polar" и принтером обеспечивает автоматизацию как процедур измерений (от задания условий измерений до регистрации вольтамперограмм), так и полную обработку результатов анализа, формирование протоколов испытаний, создание отчетов и баз данных, вывод необходимой информации на монитор компьютера и принтер.

- 1.4.2.2 Общий вид передней панели анализатора приведен на рисунках 5 и 6.
- (1) защитный кожух
- (2) привод рабочего электрода
- (3) дисплей
- (4) клавиши управления (используются только при пуско-наладке сервис-инженером предприятия-изготовителя)
 - (5) токоподвод электрода сравнения
 - (6) электрод сравнения
 - (7) рабочий электрод
 - (8) лапка-держатель тигля (вспомогательного электрода,
 - (9) (рис 6)- вспомогательный электрод (стеклоуглеродный тигель).
 - 1.5 Маркировка

На корпусе анализатора имеется следующая маркировка:

- на передней панели условное обозначение прибора; обозначение клавиш управления; товарный знак организации-изготовителя;
 - на задней панели заводской номер; обозначение разъемов.

Знак утверждения типа наносится на эксплуатационную документацию

- 1.6 Упаковка
- 1.6.1 Упаковка анализатора производится в упаковочные коробки, обеспечивающие сохранность при транспортировании и хранении.
- 1.6.2 В упаковочную коробку упаковывают один анализатор и комплект эксплуатационных документов.

Рис.5. Передняя панель вольтамперометрического анализатора АКВ-07МК (вспомогательный электрод не установлен).

Рис.6. Передняя панель вольтамперометрического анализатора АКВ-07МК. (с установленным вспомогательным электродом (9).

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

- 2.1 Эксплуатационные ограничения
- 2.1.1 При включении прибора в сеть необходимо пользоваться только электрическими розетками с заземляющим контактом.
- 2.1.2 Не допускается выполнение измерений на анализаторе при отсутствии электрода сравнения в электрохимической ячейке или его повреждении.
- 2.1.3 При эксплуатации анализатора должны соблюдаться: "Правила технической эксплуатации электроустановок потребителей" и "Правила пожарной безопасности при эксплуатации предприятий химической промышленности ВНЭ 5-7".
 - 2.2. Распаковка и внешний осмотр.

Перед вскрытием упаковочной коробки необходимо убедиться в отсутствии внешних механических повреждений.

Упаковочную коробку вскрывают и проверяют соответствие содержимого коробки комплектации, указанной в паспорте анализатора. После распаковки анализатора проверяют комплектность в соответствии с паспортом и проводят внешний осмотр. Затем анализатор помещают на сутки в сухое отапливаемое помещение.

Примечание. При наличии повреждений упаковочной коробки необходимо сообщить об этом фирме-поставщику. Упаковочную коробку сохраняйте до окончания гарантийного срока

2.3. Размещение на рабочем месте.

Установку анализатора следует производить на горизонтальной поверхности, свободной от прямого попадания солнечных лучей и источников вибрации. При установке между задней панелью анализатора и стеной лаборатории необходим зазор не менее 0,3 м.

- 2.4 Подготовка к работе
- 2.4.1 Электрические соединения.

На задней панели анализатора (рис.7) устанавливают в гнездо 2 сетевой кабель; в гнездо (3) «сот 3» - интерфейсный кабель RS232. Другой конец интерфейсного кабеля подключают к разъему RS232, расположенному на задней панели персонального компьютера с установленной операционной системой WindowsXP.

Включение/выключение анализатора выполняют нажатием кнопки (1).

Рис. 7. Задняя панель анализатора вольтамперометрического АКВ-07МК.

Кнопка «Вкл./Выкл.».

Гнездо для подключения сетевого кабеля.

«сот 3»-гнездо для подключения интерфейсного кабеля RS232

220В 50 Гц – гнездо для установки предохранителя.

Заводской номер анализатора.

«перо»- гнезда для подключения самописца (в модели АКВ-07МК не используются)

2.4.2. Установка программного обеспечения.

Программу анализатора «Polar» устанавливают согласно руководству пользователя программным обеспечением.

- 2.4.3 Установка и подключение электродов.
- 2.4.3.1 Рабочие электроды (общие сведения)

Тип рабочего электрода для установки в анализатор выбирают в соответствии с рекомендациями таблицы 1.

Таблица 1.

Определяемый элемент	Рабочий электрод	Материал рабочего электрода
Cd, Pb, Zn, Cu, Co, Ni, Tl, Se, Fe, Bi, Ag	АКУ-1	углеситал
Hg, As, Sb, Mn	АКУ-2	золото

Состоянию рабочей поверхности рабочих электродов следует уделять особое внимание, поскольку на поверхности электрода в процессе концентрирования образуется осадок и от условий его формирования зависят чувствительность и воспроизводимость метода.

а) Электрод АКУ-1.

Рабочий электрод АКУ-1 состоит из тефлонового корпуса (1), латунного электрического контакта (2) и рабочей поверхности в форме диска, выполненной из углеситала (3) (рис.8).

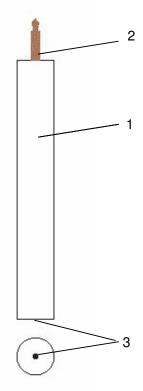


Рис.8. Электрод АКУ-1 (вид сбоку и снизу). 1 – корпус, 2 – контакт, 3 – рабочая поверхность.

Подготовка рабочей поверхности электрода к измерениям.

Электрод промывают дистиллированной водой, осушают фильтровальной бумагой, а затем протирают фильтровальной бумагой, смоченной этиловым спиртом.

В случае появления на рабочей поверхности электрода царапин ее полируют пастой, приготовленной из дистиллированной воды и порошка оксида алюминия (для хроматографии).

Пасту наносят на предметное стекло и полируют рабочую поверхность электрода (торец) до исчезновения царапин. Затем рабочую поверхность электрода промывают дистиллированной водой и протирают фильтровальной бумагой, смоченной этиловым спиртом.

После окончания измерений электрод АКУ-1 многократно промывают дистиллированной водой, осушают фильтровальной бумагой и хранят в сухом виде, не вынимая из гнезда анализатора, если нет необходимости его замены на электрод АКУ-2.

б). Электрод АКУ-2.

Рабочий электрод АКУ-2 состоит из тефлонового корпуса (1), латунного электрического контакта (2) и рабочей поверхности в форме диска, выполненной из золота (3) (см. рис.9).

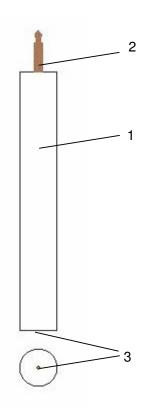


Рис.9. Рабочий электрод АКУ-2 (вид сбоку и снизу). 1 – корпус, 2 – контакт, 3 – рабочая поверхность.

Подготовка рабочей поверхности электрода к измерениям.

Электрод промывают дистиллированной водой, осушают фильтровальной бумагой, а затем протирают фильтровальной бумагой, смоченной этиловым спиртом.

В случае появления на рабочей поверхности электрода царапин ее полируют на тонкой наждачной бумаге №0, после чего рабочую поверхность электрода промывают дистиллированной водой и протирают фильтровальной бумагой, смоченной этиловым спиртом. (Применимо только для золотого электрода!!!)

При определении ртути следует уделять особое внимание электрохимической очистке электрода АКУ-2 после измерений, поскольку неполное растворение следов ртути с поверхности золота приводит к появлению трудно удаляемого фонового сигнала, мешающего проведению анализа.

После окончания измерений и перед выключением прибора следует провести принудительную электрохимическую очистку рабочей поверхности электрода. Затем электрод АКУ-2 многократно промывают дистиллированной водой, осушают фильтровальной бумагой и хранят в сухом виде, не вынимая из гнезда анализатора, если нет необходимости его замены на электрод АКУ-1.

2.4.3.2 Электрод сравнения.

Для заполнения и хранения хлорсеребряного электрода сравнения готовят насыщенный раствор хлористого калия (при комнатной температуре).

Полость электрода заполняют через заливочное отверстие с помощью пипетки или шприца без иглы (игла может повредить электрод).

По окончании измерений электрод сравнения хранят в растворе хлористого калия.

Заливочное отверстие электрода сравнения для уменьшения истечения раствора из полости электрода должно быть закрыто резиновым кольцом.

Электрический контакт электрода сравнения, расположенный в верхней части электрода, для предотвращения коррозии закрывают колпачком.

2.4.3.3 Вспомогательный электрод.

Вспомогательный электрод представляет собой стеклоуглеродный тигель. Примечание. Тигель следует предохранять от механических воздействий, поскольку стеклоуглерод является хрупким материалом,

Новые тигли протирают фильтровальной бумагой изнутри и снаружи, промывают хромовой смесью и многократно споласкивают дистиллированной водой.

После окончания измерений тигель многократно промывают дистиллированной водой, осушают фильтровальной бумагой и хранят в сухом виде.

2.4.3.4 Выбор и установка рабочего электрода.

Электроды устанавливают и подключают к анализатору в соответствии со схемой (рис. 10).

Рабочий электрод, подготовленный к измерениям, устанавливают в гнездо (1) рис.10, расположенное на нижней стороне узла электрохимической ячейки: нижний конец электрода оборачивают фильтровальной бумагой так, чтобы предохранить его нижний (рабочий) торец от соприкосновения с руками;

лапку-держатель отводят вниз левой рукой, а правой устанавливают электрод в гнездо (1) до появления характерного щелчка, после чего лапку-держатель отпускают.

Зазор между нижним торцом рабочего электрода и лапкой-держателем (при правильной установке) должен составлять (0,5-1,0) см.

Внимание! Неправильная установка рабочего электрода приводит к его неправильной поляризации и быстрому выходу из строя!

<u>При эксплуатации рабочих электродов соблюдений правил в</u> соответствии с п. 2.4.3.1 настоящего руководства является обязательным.

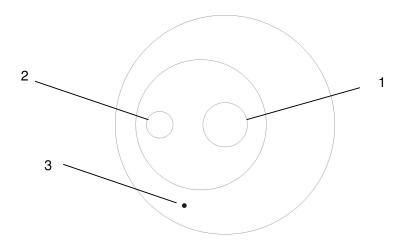


Рис.10. Схема подключения электродов (вид снизу): 1 — гнездо рабочего электрода, 2 — гнездо электрода сравнения, 3 — токопродвод вспомогательного электрода.

2.4.3.5 Подготовка и установка электрода сравнения.

Электрод сравнения хлорсеребряный ЭВЛ-1М4 перед установкой в анализатор заполняют насыщенным раствором хлористого калия и оставляют в этом растворе не менее, чем на одни сутки (см. также п. 2.4.3.2 настоящего руководства)

Подготовленный к работе электрод сравнения промывают дистиллированной водой и осушают фильтровальной бумагой.

Установка электрода сравнения в анализатор:

-резиновое кольцо, закрывающее заливочное отверстие в центральной части электрода, сдвигают вниз на 0,5 см так, чтобы отверстие было открыто наполовину;

-верхний колпачок снимают с электрода

-электрод устанавливают в гнездо (2) с верхней стороны узла электрохимической ячейки (рис.10) при открытом кожухе;

на верхний конец электрода надевают токоподвод (5) (рис.5), обеспечивающий электрический контакт электрода с анализатором.

Уровень жидкости в электроде сравнения во время измерения не должен опускаться ниже 1 см от нижнего края заливочного отверстия.

Внимание! Следите за уровнем насыщенного раствора хлористого калия в электроде сравнения! При отсутствии раствора во вспомогательном электроде электроды быстро выходят из строя!

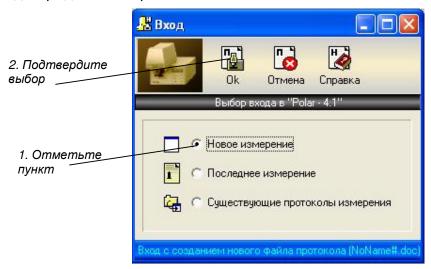
2.4.3.6. Подготовка и установка вспомогательного электрода.

В чистый и сухой тигель наливают не менее 20 см³ анализируемого раствора.

Лапку-держатель узла электрохимической ячейки отводят вниз левой рукой, правой рукой берут тигель с раствором и <u>плотно прижимают его к нижнему торцу узла электрохимической ячейки так, чтобы тигель имел хороший контакт с токоподводом вспомогательного электрода ((3) рис.10) и аккуратно отпускают лапку-держатель.</u>

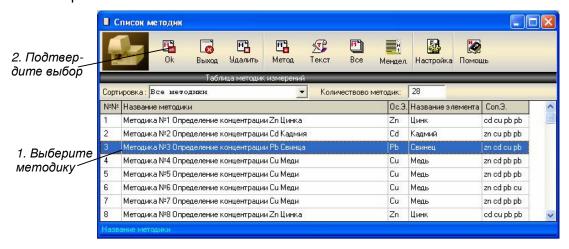
Внимание! Только правильная установка электродов обеспечивает качество результатов измерений

2.4.3.7. Работа с анализатором.


Подключают анализатор к сети, включают нажатием кнопки 1 (рис 7) После проведения анализатором автотеста на дисплее прибора должна появиться надпись **Тест прошел**. В узел электрохимической ячейки устанавливают рабочий электрод, соответствующий измеряемому элементу в соответствии с таблицей1 и электрод сравнения, наливают в тигель 20 см³ фонового электролита (согласно методике на определяемый элемент) и устанавливают тигель на лапкедержателе.

2.5 Выполнение измерений

2.5.1 Запуск программы «Polar» и ввод параметров измерения.


Запускают программу «Polar», два раза щелкнув левой кнопкой мыши по соответствующему ярлыку с изображением дельфина, находящемуся на рабочем столе компьютера.

В открывшемся окне «Вход» (см. рис.11) выбирают пункт «Новое измерение» и подтверждают выбор нажатием кнопки «ОК».

Puc.11. Окно «Вход» программы «Polar».

После этого открывается окно «Список методик» (см. рис.12). Находят в списке методику для определяемого элемента, выделяют ее и подтверждают выбор нажатием кнопки «ОК».

Puc.12. Окно «Список методик» программы «Polar».

Далее открывается таблица «Ввод параметров» (см. рис.13). Вводят параметры измерения и подтверждают ввод нажатием кнопки «ОК». Обязательно следует ввести параметры в пункты 3, 11, 13, 14. Подробнее о смысле параметров см.раздел «Параметры измерения».

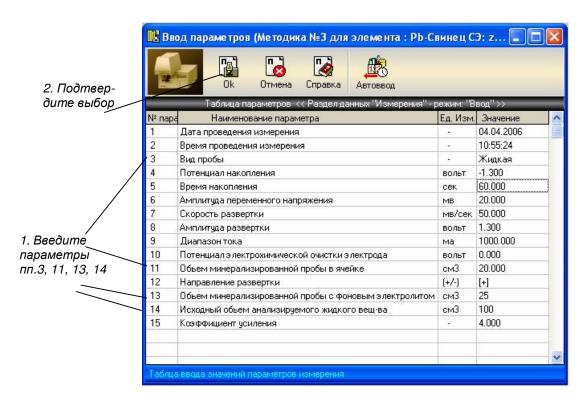


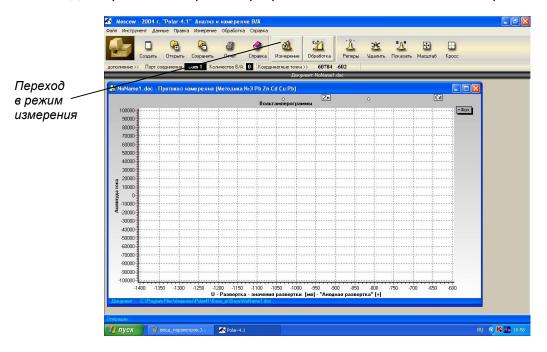
Рис.13. Окно «Ввод параметров» программы «Polar».

2.5.2. Параметры измерений.

- А) Параметры, влияющие на чувствительность измерений:
- (5) *Время накопления*.
- (9) Диапазон тока. Чем меньше ДТ, тем выше чувствительность прибора.
- (15) <u>Коэффициент усиления.</u> Чем больше *Ку*, тем выше чувствительность прибора.

Для всех элементов кроме мышьяка стандартное время накопления 60 секунд, для мышьяка- 180 секунд. Возможное время накопления 30-300 секунд.

- Б) Параметры, необходимые для определения содержания исследуемого элемента:
- (3) <u>Вид пробы</u>. Устанавливается самим химиком в зависимости от агрегатного состояния исходной пробы.
- (11) Объем минерализованной пробы в ячейке (предустановленно 20 мл).


- (13) <u>Объем минерализованной пробы с фоновым электролитом.</u> Это тот объем, до которого химик доводит минерализованную пробу (пример- золу, влажные соли после упаривания) фоновым электролитом. Устанавливается самим химиком.
- (14) Исходный объем/масса анализируемого жидкого/сухого вещества. Устанавливается самим химиком.

Пример: Химик упарил 100 мл воды до влажных солей. Развел влажные соли фоновым электролитом до 40 мл, и 20мл этого раствора налил в ячейку. Соответственно получаем пункт (14)=100мл, (13)= 40 мл, (11)= 20 мл.

После заполнения таблицы подтверждаем правильность нажатием кнопки «ОК»

2.5.3 Выполнение измерений.

1. Входят в режим измерения программы нажатием кнопки «Измерение» (рис.14).

Puc.14. Рабочее окно программы «Polar ».

2. После входа в режим «Измерение» программа проверяет наличие связи с анализатором. Если анализатор включен в сеть, правильно подключен к компьютеру и готов к работе, то на экране возникает следующее сообщение (рис.15). После нажатия кнопки «ОК» программа и анализатор готовы к проведению измерений.

Рис.15. Сообщение программы «Polar» о готовности к работе.

- 3. В тигель наливают 20 мл фонового раствора (согласно МВИ на определяемый элемент) и ставят тигель на лапку-держатель.
- 4. Устанавливают количество циклов (т.е. количество вольтамперограмм одного вида, полученных в одном растворе). Для этого в окне «Циклы» ставят желаемое число (рис.16). Обычно рекомендуется регистрировать по 3 вольтамперограммы для каждого раствора.

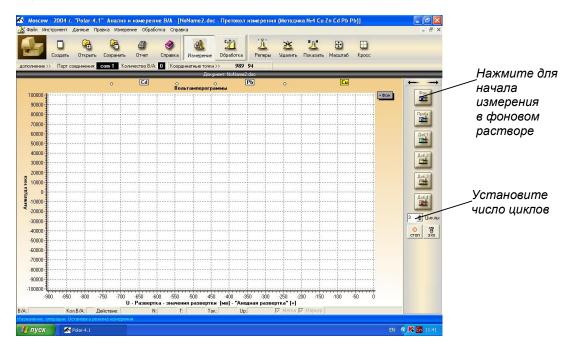


Рис. 16. Окно «Измерение» программы «Polar».

- 5. Затем начинают процесс измерения в фоновом растворе, для этого нажимают кнопку «Фон» (рис.16). При этом анализатор последовательно зарегистрирует столько вольтамперограмм, сколько циклов было выбрано.
- 6. По окончании измерения в фоновом растворе анализатор предложит усреднить полученные вольтамперограммы (рис.17).

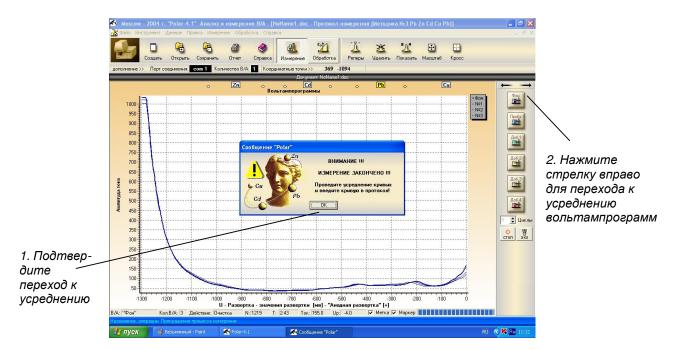


Рис.17. Сообщение «Polar» о необходимости усреднения вольтамперограмм.

- 7. Для усреднения выбирают вольтамперограммы, которые различаются между собой по высоте пиков не более, чем на 20%. Для того чтобы отбросить ненужные вольтамперограммы, нужно перейти в панель усреднения. Для этого нажать стрелку вправо (рис.17).
- 8. В панели «Усреднение» снимают отметки с тех вольтамперограмм, которые не будут усредняться (рис.18). Затем нажимают кнопку «Средняя». После этого в рабочем окне появляется усредненная вольтамперограмма. Для возврата в режим измерения нужно щелкнуть стрелку влево.

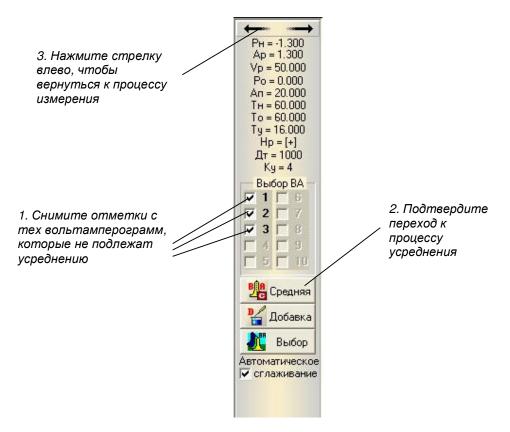


Рис.18. Панель усреднения вольтамперограмм. В данном примере доступно 3 вольтамперограммы и все они оставлены для усреднения.

9. Снимают тигель с лапки-держателя, выливают фоновый раствор, удаляют капли фонового раствора фильтровальной бумагой и помещают в тигель 20 мл подготовленной к анализу пробы.

Внимание! Рабочую поверхность электрода не протирать! (Желательно вообще не касаться ее в процессе проведения измерения)

- 10 Устанавливают тигель на лапку-держатель, выбирают количество циклов (количество вольтамперограмм), которое требуется зарегистрировать в пробе. Следует иметь ввиду, что количество циклов в фоне, пробе и пробе с добавками не обязательно должно совпадать.
- 11. Запускают измерение в растворе пробы, нажав на кнопку «Проба» (рис.16). По окончании измерения усредняют полученные вольтамперограммы подобно тому, как описано для фонового раствора.
- 12. Снимают тигель с лапки-держателя и вносят в изученный раствор пробы добавку раствора определяемого элемента с известной массовой концентрацией (далее-стандартного раствора). Если в пробе определяют, согласно методике, сразу несколько элементов, то добавки соответствующих стандартных растворов вводят последовательно одна за другой.

- 13. Затем тигель с пробой и введенными добавками устанавливают на лапкедержателе. Выбирают количество циклов для пробы с добавкой и переходят к измерению, нажав на кнопку «Доб.1» («Добавка 1») (рис.16).
- 14. После этого открывается «Таблица добавок» (рис.19). В данном окне необходимо ввести концентрацию стандартного раствора определяемого элемента (и сопутствующих элементов, если они определяются по данной методике в данной пробе) и объем стандартного раствора для определяемого элемента (и сопутствующих элементов). Ввод параметров подтверждают нажатием кнопки «ОК».

<u>При вводе чисел необходимо в качестве десятичного разделителя</u> использовать точку, а не запятую.

Следует иметь ввиду, что по ходу анализа можно вводить разные объемы добавок (№№ 1-4), но **нельзя** переходить от одного стандартного раствора элемента к стандартному раствору этого же элемента с другой концентрацией.

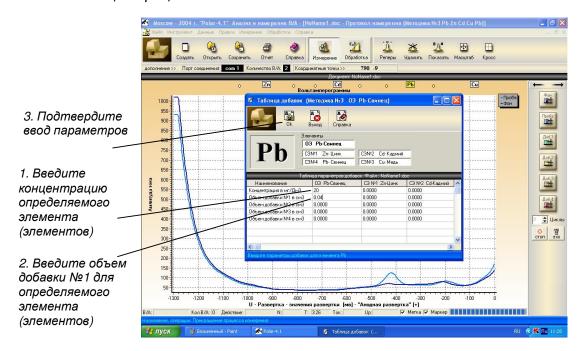


Рис.19. Таблица добавок. В данном примере выбрана методика №3 для определения свинца, зарегистрированы вольтамперограммы «Фон» и «Проба», в таблицу добавок введена концентрация стандартного раствора ионов свинца(II) 20 мг/дм³ и объем добавки №1 этого раствора 0,04 см³ (40 мкл). Сопутствующие элементы не определялись.

- 15. После этого программа переходит к регистрации вольтамперограмм пробы с добавкой №1. По окончании измерения полученные вольтамперограммы усредняют.
- 16. Затем снимают тигель с лапки-держателя и вводят в изучаемый раствор вторую добавку стандартного раствора определяемого элемента (и сопутствующих элементов). Устанавливают тигель на лапке-держателе.

- 17. Устанавливают число циклов. Затем нажимают кнопку «Доб.2» («Добавка 2»), в открывшейся «Таблице добавок» записывают объем добавки №2 для определяемого элемента (и сопутствующих элементов) и подтверждают ввод параметров нажатием кнопки «ОК».
- 18. По окончании измерения проводят усреднение полученных вольтамперограмм.
- 19. Далее вводят добавку №3 и проделывают те же операции, что и для добавки №2. Аналогично поступают в случае добавки №4.

Нет необходимости внесения всех 4-х добавок при проведении рутинных измерений. В большинстве случаев достаточно регистрации вольтамперограмм 1-2х добавок.

20. После ввода всех желаемых добавок, регистрации и усреднения полученных вольтамперограмм переходят к процессу обработки результатов.

2.6 Обработка результатов.

Устанавливают реперы для определяемого элемента (и сопутствующих элементов). Для этого нажимают кнопку «Реперы» (рис.20) и в верхней части экрана появляются реперы. Для каждого из элементов набор реперов состоит из двух точек и квадрата с символом соответствующего элемента. (Реперы для определяемого элемента выделены желтым цветом. Реперы сопутствующих элементов окрашены в белый цвет.) Квадрат устанавливают так, чтобы его положение по оси X (по оси потенциалов) совпадало с положением пика соответствующего элемента. Точки устанавливают у правого и левого подножия пика определяемого элемента. Положение точек задает размер окна (по оси потенциалов), в котором будет проводиться анализ вольтамперограмм и расчет концентрации соответствующего элемента.

Внимание! Если реперы выставлены неправильно, например так, что пик элемента не влезает целиком в выделенный диапазон потенциалов, то результаты определения концентрации будут некорректными.

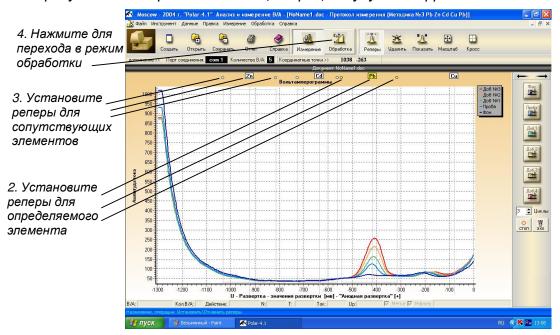


Рис.20. Установка реперов для определяемого элемента. В данном примере зарегистрированы вольтамперограммы для фонового раствора, раствора пробы, раствора пробы с добавками №№ 1-3. Определяемый элемент — свинец, сопутствующие элементы не определялись.

После установки реперов приступают к обработке результатов для этого нажимают кнопку «Обработка» (рис.20) и открывается окно «Обработка».

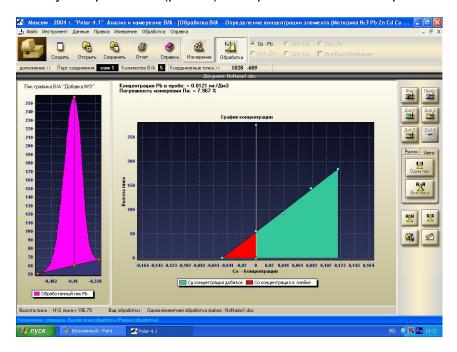


Рис.21. Начальный вид окна «Обработка». Для обработки доступны данные, относящиеся к свинцу.

Нажимают кнопку «Авто», при этом анализатор переходит в режим автоматической обработки пиков.

Нажимают кнопку «Все пики», при этом происходит обработка всех видов вольтамперограмм (Фон, Проба, Доб.1-Доб.4) для всех выбранных элементов. На экране появляется «График концентрации», в верхней части экрана — рассчитанная концентрация элемента и погрешность измерения (рис.22). Под погрешностью измерения в данном случае понимают не погрешность метода, а только среднеквадратичное отклонение.

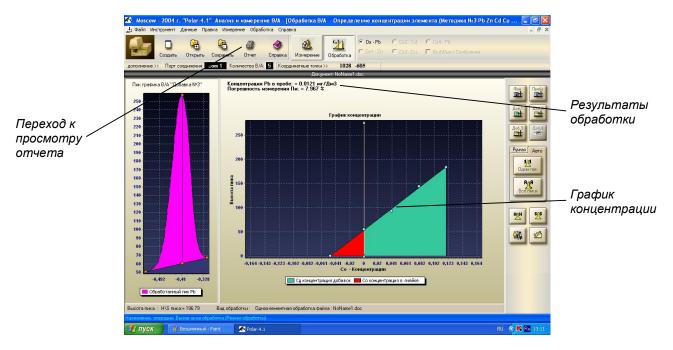


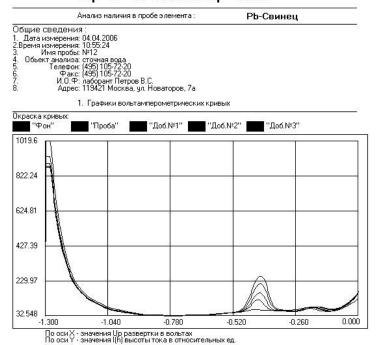
Рис.22. Окно «Обработка». В данном примере рассчитана концентрация ионов свинца(II) в пробе по трем введенным добавкам.

В случае определения нескольких элементов переход от результатов обработки одного элемента к результатам обработки другого элемента осуществляется нажатием кнопки рядом с символом соответствующего элемента (рис.21).

Далее переходят к просмотру отчета и к его распечатке. Для этого нажимают кнопку «Отчет» (рис.22).

Виды отчетов:

Отчет №1 показана вольтамперограмма и некоторые параметры измерений


Отчет №2 показаны результаты измерения одного элемента

Отчет №3 показаны результаты измерения нескольких элементов (только для многоэлементной обработки)

Для изменений Общих сведений в отчете нажать кнопку **Реквизиты**, внести изменения в открывшейся панели, далее нажать **Веод** для актуализации .

Для изменения п.3 Комментарии к измерениям закрыть отчет, в основном меню программы **POLAR** выбрать *Данные-> Комментарии -> Ок*. Внести изменения, *Ок*. Открыть отчет, проверить изменения.

Протокол измерений(Отчет №1)

2. Параметры измерения кривых

Наименование параметра измерения	Единицы измерения	Значения
Потенциал накопления Время накопления Аплитуа переменного напряжения Скорость развертки Ампитуа развертки Ампитуа развертки Ампитуа развертки Минатиза он тока Потенциал з лектрожимической очистки В Обьем праобы в ячейке полярографа Направление развертки Концентрация добаеки стандартного раствора Обьем раствора добаеки N°2 Обьем раствора добаеки N°2 Обьем раствора добаеки N°2 Обьем раствора добаеки N°3 Обьем раствора добаеки N°4 Обьем растворо добаеки N°4 Обьем растворо добаеки N°4 Обьем растворо добаеки N°4 Объем растворо добаеки N°4	BOJIST CEK BOJIST MB\CEK BOJIST MA BOJIST CM3 +/- MF/JM3 CM3 CM3 CM3 CM3 CM3	-1.300 60.000 20.000 50.000 1.300 1000.000 20.000 [+] 20.000 (-1) 0.040 0.040 0.040

3. Комментарии к измерениям

. Дата проведения измерений		- 10	
. Проверяющая организация Средства проверки Условия проведения анализа Результаты измерений			
2	чение по проведенным измерения	М	
заклю	H 23 - 13		

Рис.23. Отчет №1.

2.7 Обслуживание.

Анализатор не имеет особых требований по обслуживанию, однако, его следует содержать в чистоте и защищать от пыли и химических загрязнений.

Особое внимание необходимо обращать на состояние электродов. Каждый раз после работы необходимо тщательно промыть электроды. Индикаторный электрод многократно промывают дистиллированной водой, осушают фильтровальной бумагой и оставляют в сухом состоянии до следующего измерения. Электрод сравнения многократно промывают дистиллированной водой, осушают фильтровальной бумагой, закрывают верхний контакт колпачком для предотвращения его коррозии и погружают в насыщенный при комнатной температуре раствор хлористого калия.

Обращайтесь с анализатором осторожно, так как удары и вибрация могут сильно влиять на его работоспособность.

2.7.1 Подготовка к хранению и транспортировке.

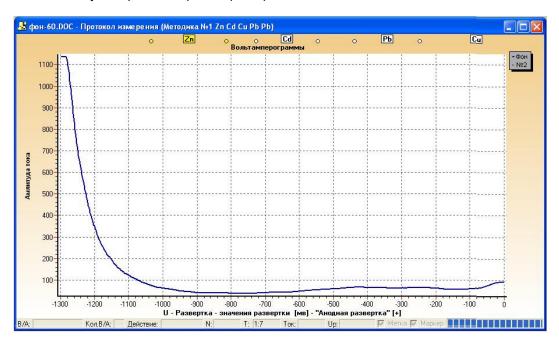
1. Разборка анализатора.

Отсоедините от задней панели анализатора сетевой и интерфейсный кабели. Отсоедините от анализатора индикаторный и вспомогательный электроды.

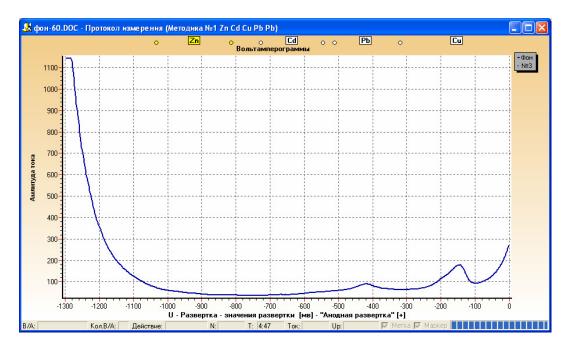
2. Упаковка для транспортировки.

Внимание! Транспортировку анализатора следует производить в упаковке фирмыпроизводителя. В случае ее отсутствия анализатор упаковывают в картонную коробку, между двумя упаковочными подушками. Пространство между стенкой коробки и анализатором должно быть заполнено упаковочной пеной и по всем направлениям составлять не менее 6 см.

Несмотря на массивность, анализатор является прецизионным устройством и требует тщательной упаковки для предохранения от толчков и вибрации при транспортировке.


А.1Требования к чистоте реактивов.

Чистота используемых реактивов является решающим фактором для получения надежных и воспроизводимых результатов. Поэтому при выполнении измерений по всем методикам должны использоваться реактивы квалификации «ос.ч.» или «х.ч.» с учетом сроков их годности.


Особое внимание следует уделить чистоте используемых кислот, так как они часто содержат тяжелые металлы в концентрациях, на несколько порядков выше допустимых фоновых значений.

Критерием пригодности реактивов, используемых для приготовления фонового электролита, является отсутствие на вольтамперограмме фонового раствора пиков определяемых элементов. В качестве примера на рисунке А.1 приведена вольтамперограмма «чистого» фонового раствора для определения Zn, Cd, Pb, Cu, приготовленного с использованием реактивов квалификации «х.ч.».

На рисунке А.2 приведена вольтамперограмма раствора фонового электролита, приготовленного с использованием кислот квалификации «ч.» и «ч.д.а.». Хорошо видно, что в данном случае фоновый раствор «заражен» ионами свинца и меди.

Puc.A.1.1 Вольтамперограмма фонового раствора для определения Zn, Cd, Pb, Cu, приготовленного с использованием реактивов квалификации «х.ч.».

Puc. А.1.2 Вольтамперограмма фонового раствора для определения Zn, Cd, Pb, Cu, приготовленного с использованием реактивов квалификации «ч.» и «ч.д.а.».

А.2 Требования к чистоте посуды.

Чистота посуды (по определяемому элементу) также часто является решающим фактором.

При определении содержания ртути в пробах рекомендуется иметь отдельный набор посуды и электродов.

А.3 Возможные неисправности

Признак неисправности	Возможная причина	Способы устранения
Нет связи анализатора с компьютером. Появляется сообщение программы: «Порт СОМ не	Анализатор и компьютер не соединены интерфейсным кабелем.	Соединить анализатор и компьютер интерфейсным кабелем.
инициализирован. Выберите новый порт или проверьте соединение компьютера с ПУ».	Номер порта подключения анализатора, установленный в программе, не совпадает с реальным номером порта. (Например, в установках программы значится СОМ2, а анализатор физически подключен на СОМ1).	Согласовать номер порта в программе с реальным номером порта. (пункт меню <i>Инструмент->Настройка.</i> Далее закладка <i>СОМ порт</i> , выбираем номер порта, <i>УСТАНОВИТЬ- > ОК</i>)
	Повреждение интерфейсного кабеля.	Заменить интерфейсный кабель.
Вольтамперограмма зашумлена.	Нет контакта у одного из электродов.	Уточнить значение тока и см. ниже
Вольтамперограмма представляет собой прямую линию с нулевым током.	Нет контакта токоприемника с дополнительным электродом (тиглем)	Правильно установить дополнительный электрод
Вольтамперограмма представляет собой прямую линию с максимальным	Неправильно выбран диапазон тока и коэффициент усиления.	Увеличить диапазон тока, уменьшить коэффициент усиления.
значением тока (2048).	Нет контакта в линии рабочего электрода	Правильно установите рабочий электрод
	Неисправен рабочий электрод	Замените рабочий электрод

УТВЕРЖДАЮ

"	"	2007 г
		_ В.Н.Яншин
Руков	водитель I ЦИ СИ	і "ВНИИМС"

АНАЛИЗАТОРЫ ВОЛЬТАМПЕРОМЕТРИЧЕСКИЕ АКВ-07МК МЕТОДИКА ПОВЕРКИ

4215-001-81696414-2007 MΠ

Настоящая инструкция распространяется на анализаторы вольтамперометрические АКВ-07 МК (в дальнейшем анализаторы), выпускаемые из производства по ТУ 4215-001-81696414-2007, находящиеся в эксплуатации, хранении, а также после ремонта и устанавливает методику их первичной и периодической поверки.

Межповерочный интервал - один год.

1. ОПЕРАЦИИ ПОВЕРКИ

1.1. При проведении поверки выполняют операции, указанные в таблице 1. Таблица 1

№п/п	Наименование операции	Номер пункта	операц	дение ций при ерке периоди ческой
1	Внешний осмотр	7.1	да	да
2	Опробование	7.2	да	да
3	Определение метрологических характеристик	7.3	да	да
3.1	Проверка предела обнаружения	7.2.2	да	нет
3.2	Проверка относительного среднеквадратичного отклонения (СКО), % случайной составляющей погрешности результатов измерений	7.3.1	да	да

2. СРЕДСТВА ПОВЕРКИ

- 2.2.1 Государственный стандартный образец (ГСО) состава водных растворов ионов кадмия с аттестованным значением массовой концентрации ионов 1,0 г/дм³ и относительной погрешностью аттестованного значения не более 1% (при P=0,95). Например: ГСО 5690 или 7472.
 - 2.2.2 Колбы мерные наливные 2-2-25, 2-50-2, 2-100-2, 2-200-2 по ГОСТ 1770.
 - 2.2.3 Пипетки 2-2-20 по ГОСТ 20292.
- 2.2.4 Дозаторы медицинские одноканальные переменного объема 2-20 мкл и 20-200 мкл по ГОСТ Р 50444
 - 2.2.5 Кислота азотная по ГОСТ 11225 (d=1,42г/см³).

- 2.2.6 Калий хлористый по ГОСТ 4234.
- 2.2.7 Кислота хлористоводородная по ГОСТ 14261 (d=1,19г/см3).
- 2.2.8 Ртуть (II) азотнокислая, одноводная по ГОСТ 4520.
- 2.2.9 Дистиллированная вода по ГОСТ 6709, с удельной электрической проводимостью не более $2*10^{-6}$ См/см (25 °C).

Допускается использование иных средств измерений и реактивов с техническими характеристиками не хуже указанных.

3. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

3.1. При проведении поверки требования к обеспечению безопасности труда должны соответствовать нормативно-технической документации на анализаторы.

4. УСЛОВИЯ ПОВЕРКИ

4.1 При выполнении поверки соблюдают следующие условия:

температура окружающего воздуха, °С 15.....35, относительная влажность воздуха, % до 80

Атмосферное давление, кПа - 84-106,7

 $(760 \pm 30 \text{ MM})$

рт.ст.)

напряжение питания, B 220 ± 33

частота напряжения питания, Γ ц 50 \pm 1

5. ТРЕБОВАНИЯ К КВАЛИФИКАЦИИ

Проведение поверочных работ, включая обработку результатов, должен проводить специалист, имеющий высшее или специальное образование, прошедший специальное обучение, инструктаж по технике безопасности и имеющий квалификацию государственного поверителя.

6. ПОДГОТОВКА К ПОВЕРКЕ

- 6.1 Перед проведением поверки проводят подготовительные работы в соответствии с руководством по эксплуатации анализатора.
- 6.2 Растворы для проведения поверочных работ готовят в соответствии с приложением А (обязательным).

При подготовке прибора к поверке контроль реактивов на отсутствие ионов кобальта (по п. А.10 приложения А) является обязательной операцией

7. ПРОВЕДЕНИЕ ПОВЕРКИ

7.1. Внешний осмотр

Внешний осмотр производят в соответствии с нормативной документацией на анализаторы.

При проведении внешнего осмотра устанавливают:

- -соответствие исполнения, комплектации и маркировки поверяемого анализатора,
- -отсутствие механических повреждений корпуса прибора, дефектов его окраски, нечеткости надписи на лицевой панели, неисправностей соединительных элементов, влияющих на нормальную работу анализатора.
 - 7.2. Опробование
- 7.2.1 Анализатор подготавливают к работе, включают и проверяют чистоту электрохимической ячейки по ионам кадмия в соответствии с руководством по эксплуатации.
 - 7.2.2 Проверка предела обнаружения.
- 7.2.2.1 В тигель электрохимической ячейки пипеткой вместимостью 20 см³ вводят поверочный раствор 1 с массовой концентрацией ионов кадмия 1·10⁻³ мг/дм³ объемом 20 см³, устанавливают параметры измерений и выполняют регистрацию трех вольтамперограмм кадмия в соответствии с руководством по эксплуатации и инструкцией пользователя программы «Polar».
 - 7.2.2.2 Значение предела обнаружения (C_{min}) рассчитывают по формуле (1)

$$C_{\min} = \frac{2\Delta x}{h} \cdot C_i$$
 (1)

где C_i – массовая концентрация ионов кадмия в поверочном растворе 1;

- h_i амплитуда пика (волны) ионов кадмия, при регистрации вольтамперограммы поверочного раствора 1,
- $(\Delta \ x)$ амплитуда шумового сигнала (пункт меню программы "Polar" "данные" "таблица точек" Δy^*) при регистрации вольтамперограммы поверочного раствора 1;

Примечание. Значение h - это высота пика кадмия по оси «у» в системе координат, а Δ х регистрируются в системе сбора и обработки данных (пункт меню программы – "данные" – "таблица точек" - Δ у*).

7.2.2.3 Полученное значение C_{min} должно быть не более $-5\cdot 10^{-5}$ мг/дм³.

- 7.3. Определение метрологических характеристик
- 7.3.1. Проверка относительного среднеквадратичного отклонения (СКО) случайной составляющей погрешности результатов измерений.

Проверку относительного среднеквадратичного отклонения (СКО) результатов измерений массовой концентрации ионов кадмия в поверочном растворе 2 выполняют «методом стандартных добавок»: регистрируют вольтамперограммы серии растворов (фон, поверочный раствор 2, поверочный раствор 2 с добавками поверочного раствора 2).

Для каждого раствора при выполнении операций по 7.3.3, 7.3.4 и 7.3.5 в программе измерений устанавливают количество регистрируемых вольтамперограмм **не менее трех.**

7.3.2 Регистрация вольтамперограмм раствора фонового электролита (фона) Пипеткой вместимостью 20 см³ помещают 20 см³ раствора фонового электролита в тигель ячейки, закрепляют его на подставке-держателе анализатора, устанавливают параметры измерений,* регистрируют и усредняют вольтамперограммы.

*Примечание. При необходимости значения параметров измерений (время очистки, время накопления, диапазон тока), они могут быть изменены оператором в программе «POLAR» с учетом значений, приведенных в приложении Б (справочном) и рекомендациями руководства по эксплуатации анализатора.

7.3.3 Регистрация вольтамперограмм поверочного раствора 2 с массовой концентрацией ионов кадмия 1·10⁻² мг/дм³.

Поверочный раствор 2 объемом 20 см³ пипеткой вместимостью 20 см³ помещают в тигель, закрепляют его на подставке-держателе и регистрируют и усредняют вольтамперограммы по 7.3.2.

7.3.4 Регистрация вольтамперограмм поверочного раствора 2 с добавками поверочного раствора 2.

После регистрации вольтамперограмм поверочного раствора по 7.3.3 в тигель ячейки дозатором вносят добавку* поверочного раствора 2. Регистрируют и усредняют вольтамперограммы.

*Примечание. Объем вносимого раствора, подбирают экспериментально таким образом, чтобы высота аналитического пика кадмия на вольтамперограмме после введения раствора увеличивалась в (1,53) раза.

- 7.3.5 Операции по 7.3.1-7.3.4 повторяют пять раз (число измерений n=5).
- 7.3.6 Значение относительного среднеквадратичного отклонения (σ, %) случайной составляющей погрешности результатов измерений рассчитывают по

формуле (2)

$$\delta = \frac{100}{X_{cp}} \cdot \sqrt{\frac{\Sigma(X_i - X_{cp})}{n-1}^2}$$
 (2)

где X_{cp} — среднее арифметическое значение результатов измерений массовой концентрации ионов кадмия в поверочном растворе 2;

 X_i — значение единичных результатов измерений массовой концентрации ионов кадмия в i-поверочном растворе;

n- число повторных измерений для i-того поверочного раствора.

7.3.5 Полученные значения относительного среднего квадратического отклонения не должны превышать 4%.

8. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 8.1. Результаты поверки анализатора заносят в протокол, форма которого приведена в приложении В.
- 8.2. Положительные результаты поверки анализатора оформляют выдачей свидетельства установленной формы по ПР 50.2.006-94.
- 8.2.1 При положительных результатах первичной поверки в паспорте СИ делают соответствующую отметку о первичной поверке.
- 8.2.2 При положительных результатах периодической поверки уполномоченным органом выдается «Свидетельство о поверке».
- 8.3 Результаты поверки считают отрицательными, если при проведении поверки установлено несоответствие поверяемых СИ хотя бы одному из требований настоящей методики
- 8.4. Анализаторы, не удовлетворяющие требованиям настоящей рекомендации, к эксплуатации не допускают. На них выдают извещение о непригодности с указанием причин. Анализаторы изымают из обращения и после ремонта подвергают первичной поверке.

(обязательное)

ПРИГОТОВЛЕНИЕ РАСТВОРОВ ДЛЯ ПРОВЕДЕНИЯ ПОВЕРОЧНЫХ РАБОТ

А.1 Приготовление аттестованного раствора ионов кадмия массовой концентрации 100,0 мг/дм³

Вскрывают стеклянную ампулу ГСО и выливают содержимое в сухой стакан. Пипеткой вместимостью 5,0 см³ переносят 5,0 см³ раствора ГСО в мерную колбу вместимостью 50 см³ и доводят объем раствора до метки бидистиллированной водой. Срок хранения раствора – 6 месяцев.

А.2 Приготовление аттестованного раствора ионов кадмия массовой концентрации 1,0 мг/дм 3

В мерную колбу вместимостью 100 см³ вносят пипеткой вместимостью 1 см³ вносят 1 см³ раствора ионов кадмия, приготовленного по А.1 и доводят содержимое колбы до метки бидистиллированой водой и перемешивают. Срок хранения раствора не более 3 дней.

А.3 Приготовление поверочного раствора (1) с массовой концентрацией ионов кадмия $1\cdot 10^{-2}$ мг/дм³

В мерную колбу вместимостью 200 см³ вносят пипеткой вместимостью 2 см³ вносят 2 см³ раствора ионов кадмия, приготовленного по А.2 и доводят содержимое колбы до метки раствором фонового электролита, приготовленного по А.8 и перемешивают. Раствор готовят в день выполнения работ.

А.4 Приготовление поверочного раствора (2) с массовой концентрацией ионов кадмия $1\cdot 10^{-3}$ ме/дм 3

В мерную колбу вместимостью 100 см³ вносят пипеткой вместимостью 10 см³ вносят 10 см³ раствора ионов кадмия, приготовленного по А.З и доводят содержимое колбы до метки раствором фонового электролита, приготовленного по А.8 и перемешивают. Раствор готовят в день выполнения работ.

- A.5 Приготовление раствора азотной кислоты с молярной концентрацией 0,1моль/дм 3
- В мерную колбу вместимостью 1 дм 3 , в которую добавляют 500 см 3 бидистиллированной воды, пипеткой вместимостью 10 см 3 вносят 6,2 см 3 концентрированной азотной кислоты (d = 1,42 г/см 3) и доводят объем раствора до метки бидистиллированной водой. Срок хранения раствора 6 месяцев.
- А.6 Приготовление раствора соляной кислоты с молярной концентрацией 1моль∕дм³
- В мерную колбу вместимостью 1 $дм^3$, в которую добавляют 500 cm^3 бидистиллированной воды, цилиндром вместимостью 100 cm^3 вносят 82,5 cm^3

концентрированной соляной кислоты (d = 1,185 г/см³) и доводят объем раствора до метки бидистиллированной водой. Срок хранения раствора 6 месяцев.

- А.7 Приготовление раствора азотнокислой ртути (II) с молярной концентрацией 0.01моль/дм 3
- 0,343 г ртути (II) азотнокислой (результат взвешивания записывают до третьего десятичного знака) растворяют в 50 см³ раствора азотной кислоты с молярной концентрацией 0,1моль/дм³, приготовленного по А.5 и количественно переносят в мерную колбу вместимостью 100 см³. Содержимое колбы доводят до метки бидистиллированной водой. Раствор хранят в темноте. Срок хранения раствора 6 месяцев.

А.8 Приготовление раствора фонового электролита

В мерную колбу вместимостью 1 дм³ цилиндром вносят 50 см³ раствора соляной кислоты с молярной концентрацией 1моль/дм³, приготовленной по А.5, затем пипеткой вносят 15 см³ раствора азотнокислой ртути с молярной концентрацией 0,01моль/дм³, приготовленного по А.7 и доводят содержимое колбы до метки бидистиллированной водой. Срок хранения раствора 6 месяцев.

А.9 Приготовление насыщенного раствора хлористого калия

Калий хлористый растворяют при нагревании в 150 см³ дистиллированной воды до насыщения. Горячий раствор охлаждают до комнатной температуры. Раствор хранят в контакте с выпавшими кристаллами соли. Срок хранения раствора 6 месяцев.

А.10 Перед началом поверочных работ выполняют обязательную проверку реактивов, приготовленных по А.5 - А.9, на отсутствие ионов кадмия

Таблица А.1- Параметры измерений (ориентировочные значения)

Наименование элемента	Cd
Тип измерительного электрода	углеситаловый
Направление развертки	Положительное
Потенциал очистки электрода, В	0
*Время очистки, с	60
Скорость линейной развертки потенциала, мВ/с	50
Потенциал накопления, В	- 1,3
Амплитуда развертки, В	1,4
*Время накопления, с	60
Потенциал аналитического пика, В (ориентировочное значение)	- 0,7
*Диапазон тока: 1000х4	

ФОРМА ПРОТОКОЛА ПОВЕРКИ

Протокол №	ОТ	200 г	. поверки	
Анализатора во АКВИЛОН», Росс	льтамперометрического А сия	КВ-07МК, произво	дства ООО «НГ	ПО
Зав. номер			· · · · · · · · · · · · · · · · · · ·	_
Принадлежащего	D		· · · · · · · · · · · · · · · · · · ·	-
Условия поверки	l			_
Средства поверк				-
Средства поверк	и		····	-
Внешний осмотр				
	определение метрологическ			
Llaurenaan van ander		Значение		
Наименование характеристики		Действительное	По паспорту	
1. Опробывание				
2 Предел обнаружен	ния, мг/дм ³			
	ных значений СКО случайной ешности результатов измерений иции, %			
Заключение по р	езультатам поверки анализ	атор вольтампером	иетрический	
AKB-07 MK	признан при	игодным (непригоді	ным) к применен	ию
	(указать прич	ину)		
Выдано свидетел	пьство №	_ от	20 г.	
Проверку провод	цил			
	(полпись)			